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ABSTRACT 

The present study investigates the problem of post buckling of thin steel plates subjected to in-plane patch 

compression loading. Finite difference method was used to treat the stability problems. The geometrically nonlinearity was 

considered.  The present procedure is general and applicable to the buckling, post buckling and free vibration of thin 

rectangular plates. The influences of initial imperfection, thickness variation, plate aspect ratios, boundary conditions, and 

length of patch loading on the post buckling behavior are shown graphically. The plate was analyzed with different 

tapering ratios (ta/to) (1.0, 1.25, 1.5, 1.75 and 2.0) so different patch length ratio (S) (0.0-0.3) were taken. A comparison 

with previous works is made. Finally, it is shown that the post buckling behavior very sensitive for some effects such as 

initial imperfection, tapering ratio, and patch length ratio. 

KEYWORDS: Thin Plates, Tapered Plates, Large Displacement, Post Buckling Behavior, Patch Compression Loading, 

Finite Difference Method 

INTRODUCTION 

Thin plates are commonly used in most structures. Ships and marine components are examples of complex      

thin-walled structures that are composed of various plate elements characterized by different combinations of geometry and 

loading conditions. Post buckling behavior of thin plates with and without fault is important. Post buckling behavior of thin 

walled structures is a well-known phenomenon and because of occurring easily, it must be diagnosed accurately in security 

and safety considerations
(9)

. In the behavior of these plate structures under in-plane compression loads, a critical point 

exists where an infinitesimal increase in load can cause the plate surface to buckle. The load at this critical point defines the 

buckling strength of the plate. Increases in load beyond the critical load at the initiation of buckling increase the buckling 

deformations until collapse occurs. Thus, the load at collapse defines the post buckling or crippling strength of the plate. 

Thin plates are susceptible to different types of defects such as initial imperfections, aspect ratios, and boundary 

conditions, etc. On the other hand, a limited number of studies have been carried out to evaluate the influence of patch 

loading on the post buckling strength in the compressed plates although designers are always confronted with this issue. 

Such a problem is encountered in airframe where the action of the air loading on an aircraft wing develops an axial loading 

that gives a non-uniform compression that can lead to loss of stability. In addition, the aerodynamic heating of panels in 

supersonic aircraft can be approximated by non-uniform thermal stresses, as the temperature distribution is not uniform 

throughout the volume of the restrained plate. In civil engineering structures, engineers are often confronted with designs 

involving partial edge loading, such as the buckling of the web plate of a crane girder under the action of heavy wheel 

loads applied to the flanges. It is worth to point out that since constructional elements are frequently subjected to in-plane 

patch loading and often prone to buckling and post-buckling, it is important that further design data should be provided to 
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deal with this important stability problem. If such an issue has so far received relatively little attention from researchers, 

the reason for this is undoubtedly due to the additional theoretical difficulties involved in obtaining rigorous solutions to 

the buckling of plate when subjected to non-uniform compression. Undeniably, the solution of this stability problem is 

mathematically difficult to obtain as the stress distribution throughout the plate varies considerably
 (4)

. In 2010,     

Ikhenazen, et. al. investigate the problem of linear buckling of simply supported thin plates subjected to patch 

compression by using finite element method. The stability problem was treated by using the total energy and the plate was 

modelled by means of an eight nodes rectangular element and a reduction of variable strategy where applied to estimate the 

number of degrees of freedom leading to little or no loss in seeking solution accuracy. They concluded that a good 

accuracy of the minimal critical buckling load and a big saving in computer time have been obtained. Abodi (2012) 

investigate the problem of linear buckling of thin steel plates subjected to in-plane patch compression loading by using 

finite difference method. He studied influences of thickness variation, plate aspect ratios, and boundary conditions, and 

length of patch loading on the buckling load and shown graphically. The plate was analyzed with different tapering ratios 

(ta/to) (1.0, 1.25, 1.5, 1.75 and 2.0), so different patch length ratio (Sp) (0.0-0.4) were taken. He concluded that the buckling 

load factor will increase with decreasing length of axial patch loading where the decreasing the length of axial patch 

loading to 0.4 will increase the buckling load factor by about 40% for plate with aspect ratio (a/b=1) and tapering ratio 

(ta/to=1.0). In the present study, the post buckling of thin elastic plates non-uniformly compressed in one direction                  

(see Figure (1)) is investigated using the finite difference method. This numerical analysis is performed with the 

FORTRAN90 program that was written by Ammash
(3)

. The aim of this paper is to show some representative elastic post 

buckling behavior of a simply supported plate under in-plane patch loading with constant and variable thickness.            

The influence of edge ratio and load breadth ratio on the post-buckling strength is investigated. The obtained numerical 

results are graphically summarized through an in-plane load with out of plane deformations, varying boundary condition, 

varying length of patch loading ratio and varying tapering ratio and some interesting conclusions are drawn. 

 

Figure 1: Rectangular Thin Plate under In-Plane Patch Loading 

 

Basic Plate Relationships and Equations 

For a homogeneous isotropic plate, the basic relationships for stresses and deformations of a plate element            

( tdydx .. ) may be summarized as follows:  

In large deflection behavior the interaction between the flexural and the membrane actions is taken into account.  

In this case the deflection and the stresses vary in a nonlinear manner with the magnitude of the membrane load. 

For large deflections of plate with constant thickness and with out-of-plane deformation ( ow ) up to several 

times of the plate thickness (t), the basic differential equations are given as follows
(3)

: 
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The basic differential equation for the membrane action is derived as follows: 

Starting from the equation of compatibility of a thin plate element and expressing the strains and curvatures as 

functions of the stress resultants, the following equations are presented
 (3)

: 
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The required derivatives for strain in equations (5) are: 

 
 

 

 
  




































































































































y

N

xc

c

yx

N

Et

v

yx

x

N
v

x

N

x

N
v

x

N

xc

c
NvN

xc

c

Etx

x

N
v

y

N

Ety

xy

t

txy

x

xy

xy

xy

t

t
xy

t

t

x

y

yx

x

x

.
1

12

.

.
1

2
.

1

2

1

.
1

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

       (6) 



56                                                                                                                                                                                           Jawad Talib Abodi 

 
www.iaset.us                                                                                                                                                    editor@iaset.us 

Substitution of these derivatives in equation (4) yields: 
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By expressing equation (7) as function of stress resultants by using equation (3), then: 
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By similar algebraic steps, it is possible to write the equilibrium equation in terms of w and Φ, thus 
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These equations (8) and (9) may be considered as the basic (or governing) differential equations for a plate with 

variable thickness and subjected to transverse and in-plane compressive load, as shown in Figure (2). 
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Figure 2: Axial (In-Plane) Load of Linearly Tapered Rectangular Plate 

 

Boundary Conditions 

For simply supported or hinged plate 
(3)

: 

Loaded edges (y=0 and y=a by Nx (per unit width)) 

a- Loaded edges (y=0 and y=a) 

a-1- Flexural Boundary Conditions  

At x = 0, b 

w = 0, My = 0 

where 
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(No shearing stresses at edges) 

b- Unloaded edges (x=0 and x=b) 

b-1- Flexural Boundary Conditions 

at x = 0, b 

w = 0, Mx = 0 

where 
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a-2- Membrane Boundary Conditions 

at x = 0, b 
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Solution Procedure 

The finite difference procedure is employed here for the large deflection problems.  The coupled equilibrium 

equations may be written by finite difference expressions as
(3)

:  

      01  owBA
            (10) 

        011  owMDwC
           (11) 

in which  

[A]: Stresses matrix. 

[C]: Bending stiffness matrix. 

 0w
: Initial displacement vector. 

 1w
: New displacement vector. 

 1
: Stress vector. 

Outside (fictitious) nodes are needed for deflection (w1) and also line integrated on along boundary is used for the 

stress function. 

The following solution procedure is suggested in order to adequately determine the secondary buckling load and 

the secondary buckling mode: Definition of desired load level. 

 As tshe out of plane displacement vector 
 0w

is not known; an initial displacement vector 
 0w

will be assumed 

likely a 
 0001.0

. 

 Putting the assumed vector
 0w

in Equation (8) to evaluate the stress vector
 1

. 

 Putting the stress vector 
 1

from step (3) and displacement vector 
 0w

in Equation (9) to evaluate a new 

displacement vector
 1w

. 
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Steps (1-3) represent one cycle of the iterative procedure and the procedure is repeated until the desired 

convergence criterion is achieved.  The whole procedure is repeated for a new load level
(3)

. 

NUMERICAL RESULTS 

To study the effect of different parameters such as: initial imperfection ,thickness variation, plate aspect ratios,  

boundary conditions, and length of patch loading on the post-buckling behavior of rectangular thin plates, several plates are 

analyzed by using the finite difference method. Non-dimensional relationships between load and the out-of-plane 

displacements are given to show the post-buckling behavior of these plates under in-plane compressive patch load. 

The accuracy of the results of the present program for the analysis of real panels was compared by Ammash
(3)

 

with the available experimental and numerical results obtained by Mirambell, et al
(6)

 [1994] on simply supported panels.  

The properties of this specimen are shown in Figure (3). The numerical analysis of Mriambell, et al is based on the 

displacement formulation of the finite element method for the nonlinear analysis of general steel-shell structures. 

Ammash was analyzed the plate based on the prescribed procedure and divided it into (2412) divisions.          

The following comparison concern a plate model of thickness t=3mm, E=2.110
6
 kN/m

2
, a=600mm, b=1200mm, v=0.3, 

and the initial imperfection (wo=1.92 sin (2πx/b) sin (πy/a) (in mm)) 

 Figure (3) shows a comparison between the experimental and the numerical results for the out-of-plane 

displacements. The results obtained from Ammash’s study were closer to the test results than to the finite element results 

obtained by Mirambell, et al [1994] because his study the differential equations directly but the finite element the uses 

approximate polynomial fields for elements. The load-deflection results are listed in Table (1). 

 

Figure 3: Post-Buckling Behavior of a Simply Supported Thin Rectangular 

 Plate under Uniaxial Compression Load at x-Direction 
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Table 1: Comparison of Results with Experimental and Theoretical Studies 

Maximum Deflection ((w+wo)/t) 
Load  

(Nxa
2
/π

2
Et

3
) 

Present 

Study 

Theoretical 

Results
()
 

Experimental 

Results
()
 

0.640 0.640 0.640 0 

0.743 0.733 0.766 0.128 

0.833 0.783 0.866 0.214 

1.316 1.233 1.433 0.366 

1.600 1.500 1.750 0.429 

2.040 2.000 2.233 0.536 

2.400 2.366 2.600 0.644 

 

In 1975, Williams and Walker
(13) 

derived explicit expression for the load-deflection relationship for simply 

supported uniformly square plate based on the perturbation approach. The results were presented for the plates with variety 

geometries, boundary constraints and in-plane loading conditions. The accuracy of these results was sufficient for 

engineering design purposes. 

Figure (4) shows the load-out-of-plane displacements of a simply supported thin plate under compressive load   

(Nx (per unit width)).  The following comparison concern a plate model of thickness t=0.01(m), E=2×10
6
 kN/m

2
 and v=0.3. 

The plate has an initial imperfection (wo/t) of (0, 0.01, 0.1, and 0.5) of which the shape is considered to be sinusoidal 

(

  







b
y

a
xwo

 sinsin
) where wo is the amplitude of the initial imperfection at the center of the plate.  The results 

of the present study are compared with the results of Williams and Walker
(13)

 study. Good agreement with these theoretical 

results is achieved.  

 

Figure 4: Post-Buckling Behavior of a Simply Supported Thin Square 

Plate under Uniaxial Compressive Load at x-Direction
(3)

 

 
In all the presented cases, a finite difference method was used by considering the full plates with (14×14) mesh. 

The following geometry and material properties of steel plate are used in the analysis: (E=200 GPa; v=0.30,                   

Fy=250 MPa,). The effect of patch length ratios on the post-buckling behavior is considered in the present study.            
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The values of patch length ratios (S=(a-ap)/a) is taken to be (1.0, 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4).  The initial imperfection 

(wo/t) is considered to be sinusoidal (

  







b
y

a
xwo

 sinsin
) where wo is the amplitude of the initial imperfection 

at the center of the plate. 

 Figure (5) presents the load-deflection curve of a simply supported thin square perfect plate under uniaxial patch 

load in x- direction with various ratios of patch length.   

Figure (6) presents the load-deflection curve of a simply supported thin square imperfect plate under uniaxial 

patch load in x- direction with various ratios of patch length. The initial imperfection (wo/t) is taken to be 0.1.  

 

Figure 5: Post-Buckling Behavior of a Simply Supported Thin Square Plate under Uniaxial 

 Compressive Load at x-Direction with Various Ratios of Patch Length 

 

 

Figure 6: Post-Buckling Behavior of a Simply Supported Thin Square Plate under 

 Uniaxial Compressive Load at x-Direction with Various Ratios of Patch Length 
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Figure (7) presents patch length ratio-maximum deflection curve of a simply supported thin square imperfect plate 

under uniaxial patch load in x- direction. The initial imperfection (wo/t) is taken to be (0.0, 0.10, 0.25, 0.50, 0.75 and 1.00) 

with sinusoidal curve. The value of in-plane of patch loading at x-direction is taken to be 1000 kN/m and the slenderness 

ratio is (b/t=100) with aspect ratio (a/b=1.0).   

 

Figure 7: Post-Buckling Behavior of a Simply Supported Thin Square Plate under  

Uniaxial Compressive Load at x-Direction with Various Ratios of Patch Length 

Figure (8) presents patch length ratio-maximum deflection curve of a clamped supported thin square imperfect 

plate under uniaxial patch load in x- direction. The initial imperfection (wo/t) is taken to be (0.0, 0.10, 0.25, 0.50, 0.75,           

and 1.00) with sinusoidal curve. The value of in-plane of patch loading at x-direction is taken to be 2000 kN/m and the 

slenderness ratio is (b/t=100) with aspect ratio (a/b=1.0). 

 

Figure 8: Post-Buckling Behavior of a Simply Supported Thin Square Plate under 

 Uniaxial Compressive Load at x-Direction with Various Ratios of Patch Length 

 
Figure (9) presents patch length ratio-maximum deflection curve of a simply supported thin square perfect plate 

under uniaxial patch load in x- direction. Various values of aspect ratios were taken into account as (a/b=0.5, 1.0, 1.5, 2.0, 

3.0 and 4.0). The initial imperfection (wo/t) is taken to be zero. The value of in-plane of patch loading at x-direction is 

taken to be 1000 kN/m and the slenderness ratio is (b/t=100).  
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Figure 9: Post-Buckling Behavior of a Simply Supported Thin Square Plate under 

 Uniaxial Compressive Load at x-Direction with Various Ratios of Patch Length 
 

Figure (10) presents patch length ratio-maximum deflection curve of a simply supported thin square imperfect 

plate under uniaxial patch load in x- direction. Various values of tapering ratios were taken into account as (ta/to=1.0, 1.25, 

1.5, 1.75, and 2.0). The initial imperfection (wo/t) is taken to be 0.1 with sinusoidal curve. The value of in-plane of patch 

loading at x-direction is taken to be 1000 kN/m and the slenderness ratio is (b/t=100) with aspect ratio (a/b=1.0).  

 

Figure 10: Post-Buckling Behavior of a Simply Supported Thin Square Plate under 

Uniaxial Compressive Load at x-Direction with Various Ratios of Patch Length 

From these figures, can be noticed that: 

 The post buckling behavior is effected by the patch length ratio where maximum deflection will decrease with 

increasing the patch length ratio. 

 The percentage of decreasing of maximum deflection for simply supported plate under in-plane patch loading at 

x-direction with initial imperfection equal to zero about (42.1%) while for same plate with initial imperfect equal 

to (1.0) about (8.1%) with patch length ratio (0.3). 

 The percentage of decreasing of maximum deflection for clamped supported plate under in-plane patch loading at 

x-direction with initial imperfection equal to zero about (62.1%) while for same plate with initial imperfect equal 

to (1.0) about (13.7%) with patch length ratio (0.3). 
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 The percentage of decreasing of maximum deflection for simply supported plate under in-plane patch loading at 

x-direction with initial imperfection equal to zero with aspect ratio (a/b=1.0) about (19%) while for same plate 

with aspect ratio equal to (a/b=2.0) will increase about (45.3%) with patch length ratio (0.3). 

 The percentage of decreasing of maximum deflection for simply supported plate under in-plane patch loading at 

x-direction with initial imperfection equal to (0.1) with aspect ratio (a/b=1.0) about (27.1%) for plate with 

tapering ratio (1.0) while for plate with tapering ratio (2.0) about (53.3%). 

 The percentage of decreasing of maximum deflection have same values for plate with tapering ratio (ta/to=2.0), 

aspect ratio (a/b=1.0), slenderness ratio (b/t=100).  

CONCLUSIONS 

This paper was presented a general method of analyzing the post buckling behavior of rectangular plate with 

constant thickness or variable with initial curvatures.  Finite difference method is very suitable for programming and 

sufficiently accurate as it tends to the exact solution when the node density is increased. The effect of initial imperfection, 

patch length ratio, aspect ratio, boundary condition, and tapering ratio on the post buckling behavior are considered. It is 

concluded that the post buckling behavior of thin plate is very sensitive to the magnitude of some effects such as patch 

length ratio, initial imperfection and magnitude of tapering ratio.  
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